Esophageal Motility Disorders
Not Just Achalasia!

Monik Lammi, MD
Clinical Director of Motility
Ochsner Medical Center
Objectives

• Examine application of high-resolution manometry in the diagnosis of esophageal motility disorders

• Discuss diagnosis and treatment of non-achalasia esophageal motility disorders as defined by the v3 Chicago Classification
Evolution of Esophageal Manometry

1950s
First water-perfused catheters with few side holes

1990s
HRM with increased number of pressure sensors

Holloway. 2006, GI Motility Online
Esophageal Manometry

• Current catheters
 – Circumferential pressure sensors
 – 1 to 2cm apart
Esophageal Manometry

Line plot

Color contour plot
Esophageal Pressure Topography Plot

Pressure Amplitude
Esophageal Pressure Topography Plot

UES

LES
Chicago Classification

• 2008
 – Chicago Classification was developed
 – First official classification system
 – Based on several studies in healthy volunteers at Northwestern University

• 2012
 – Chicago Classification v2

• 2015
 – Chicago Classification v3

van Hoeij et al. 2016, J Neurogastroenterol Motil
The Chicago classification v3.0
Hierarchical analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm
 - Yes: Achalasia
 - Type I: No contractility
 - Type II: ≥20% PEP
 - Type III: ≥20% spasm (DL < 4.5s)
 - No: Disorders with EGJ outflow obstruction

2. IRP ≥ ULN and not Type I-III achalasia
 - Yes: EGJ outflow obstruction
 - Incompletely expressed achalasia
 - Mechanical obstruction
 - No: Major disorders of peristalsis
 - Entities not seen in normal subjects

3. IRP normal and Short DL or high DCI or 100% failed peristalsis
 - Yes: DES
 - ≥ 20% premature (DL < 4.5s)
 - Jackhammer esophagus
 - ≥ 20% DCI > 8,000 mmHg•s•cm
 - No: Absent contractility
 - No scorable contraction
 - Consider achalasia

4. IRP normal and ≥50% ineffective swallows
 - Yes: Ineffective motility (IEM)
 - ≥50% ineffective swallows
 - No: Fragmented peristalsis
 - ≥50% fragmented swallows and not ineffective

5. IRP normal and > 50% effective swallows
 - Yes: Minor disorders of peristalsis
 - Impaired clearance
 - No: Normal

Kahrilas et al. 2015, Neurogastroenterol Motil
Integrated Relaxation Pressure (IRP)

- Mean pressure of the EGJ during maximal relaxation in the 10 sec after the swallow
- LES pressure relaxation
Contractile Deceleration Point

- Contractile Deceleration Point (CDP)
 - Deceleration point where propagation velocity slows
Distal Latency

- Distal latency
 - Time from the onset of swallow to CDP (> 4.5 sec)
 - Metric of spastic contractions
Distal Contractile Integral

- Multiplication of amplitude x length x duration
- Measure of strength of contraction

Kahrilas et al. 2015, Neurogastroenterol Motil
Distal Contractile Integral

Failed
DCI <100

Weak
DCI 100-450

Hypercontractile
DCI > 8000

Kahrilas et al. 2015, Neurogastroenterol Motil
The Chicago Classification v3.0
Hierarchical Analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm
 - Yes: Achalasia
 - Type I: No contractility
 - Type II: ≥20% PEP
 - Type III: ≥20% spasm (DL<4.5s)
 - No: Disorders with EGJ outflow obstruction
 - Incompletely expressed achalasia
 - Mechanical obstruction

2. IRP ≥ ULN and not Type I-III achalasia
 - Yes: EGJ outflow obstruction
 - Incompletely expressed achalasia
 - Mechanical obstruction
 - No: Major disorders of peristalsis
 - Entities not seen in normal subjects

3. IRP normal and Short DL or high DCI or 100% failed peristalsis
 - Yes: DES
 - ≥20% premature (DL<4.5s)
 - Jackhammer esophagus
 - ≥20% DCI >8,000 mmHg•s•cm
 - Absent contractility
 - No scorable contraction
 - Consider achalasia
 - No: Minor disorders of peristalsis
 - Impaired clearance

4. IRP normal and ≥50% ineffective swallows
 - Yes: Ineffective motility (IEM)
 - ≥50% ineffective swallows
 - No: Fragmented peristalsis
 - ≥50% fragmented swallows and not ineffective

5. IRP normal and > 50% effective swallows
 - Yes: Normal

Kahrilas et al. 2015, Neurogastroenterol Motil
The Chicago classification v3.0
Hierarchical analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm

 Yes

 Achalasia
 Type I: No contractility
 Type II: ≥20% PEP
 Type III: ≥20% spasm (DL < 4.5s)

Disorders with EGJ outflow obstruction

Type I
No contractility

Type II
Panesoph pressurization

Type III
Esophageal spasm

Kahrilas et al. 2015, Neurogastroenterol Motil
Boeckxstaens et al. 2014, Lancet
The Chicago classification v3.0

Hierarchical analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm
 - Yes
 - Achalasia
 - Type I: No contractility
 - Type II: ≥20% PEP
 - Type III: ≥20% spasm (DL<4.5s)
 - No

2. IRP ≥ ULN and not Type I-III achalasia
 - Yes
 - EGJ outflow obstruction
 - Incompletely expressed achalasia
 - Mechanical obstruction
 - EGJ outflow obstruction

Disorders with EGJ outflow obstruction

Kahrilas et al. 2015, Neurogastroenterol Motil
The Chicago classification v3.0

Hierarchical analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm
 - Yes: Achalasia
 ▶ Type I: No contractility
 ▶ Type II: ≥20% PEP
 ▶ Type III: ≥20% spasm (DL<4.5s)
 - No: Disorders with EGJ outflow obstruction

2. IRP ≥ ULN and not Type I-III achalasia
 - Yes: EGJ outflow obstruction
 ▶ Incompletely expressed achalasia
 ▶ Mechanical obstruction
 - No: Major disorders of peristalsis
 ▶ Entities not seen in normal subjects

3. IRP normal and Short DL or high DCI or 100% failed peristalsis
 - Yes: DES
 ▶ ≥ 20% premature (DL<4.5s)
 ▶ Jackhammer esophagus
 ▶ ≥ 20% DCI >8,000 mmHg·s·cm
 ▶ Absent contractility
 ▶ No scorable contraction
 ▶ Consider achalasia
 - No: Consider achalasia

Kahrilas et al. 2015, J Neurogastroenterol Motil
Major Disorders of Peristalsis

DES
- ≥ 20% premature (DL < 4.5s)
- **Jackhammer esophagus**
- ≥ 20% DCI > 8,000 mmHg·s·cm
- **Absent contractility**
- No scorable contraction
- Consider achalasia
Distal Esophageal Spasm

- Normal IRP
- More than 20% of premature swallows (DL< 4.5)
- Previously known as “diffuse esophageal spasm”
Distal Esophageal Spasm

- CFV is a nonspecific and unreliable measure
- Can be variable within one subject
- Abnormal DL was consistently associated with dysphagia and chest pain
- CFV was omitted from most recent Chicago Classification

Kahrilas et al. 2015, J Neurogastroenterol Motil
Conklin. 2013, Neurogastroenterol Motil
Hypercontractile Esophagus

- At least two hypercontractile swallows (DCI > 8000)
- Jackhammer esophagus
Hypertensive Peristalsis

- Nutcracker esophagus
 - DCI 5000-8000 mm x Hgs x cm

- Asymptomatic controls
 - Sometimes have DCI >5000
 - Never have DCI > 8000

- DCI >8000 was found to be associated with:
 - Chest pain
 - Dysphagia
 - Positive response to treatment

- This diagnosis has been omitted from most recent version of Chicago Classification

Herregods TV et al. 2015, J Neurogastroenterol Motil
Van Hoeij et al. 2016, J Neurogastroenterol Motil
Management of Esophageal Spasm and Hypercontractile Esophagus

• The evidence is not strong

• Most of what we know is based on retrospective data reviews and small uncontrolled trials

• Studies often enrolled heterogeneous populations
Management

• Lifestyle Interventions
 – Avoid triggers
 ○ Cold fluids
 ○ Caffeine
 ○ Factors that increase GERD: Smoking, ETOH
 ○ Soft foods and liquids trigger fewer symptoms

• Acid Suppressant Medications
 – Trial of high dose PPIs should be considered in all patients

• Rule out and treat Eosinophilic Esophagitis

Calcium Channel Blockers

- Reduce LES pressure and peristaltic amplitude
- Nifedipine MR 10-20mg TID prn (B – 1 RCT)
- Diltiazem MR 60mg TID prn (B - 1 RCT)
- Side Effects: hypotension, bradycardia, edema
Nitrate Donors

- Nitrate donors reduce contractile amplitude and velocity

- Glycerin trinitrate 300mg SI TID prn (C)
- Isosorbide dinitrate 10-40μg PO QDay or TID (C)

- Short-acting or long-acting preparations

- Side Effects: Dizziness, Headache
Peppermint Oil

• Blocks Ca channels and decreases smooth muscle spasm

• Peppermint oil 1 capsule TID or PRN (C)

• One trial of 8 patients demonstrated that infusion of peppermint oil eliminated simultaneous contractions in DES

Pimental M et al. 2001, J Clin Gastroenterol
Roman et al. 2013, Gastroenterol Clin North Am
Phosphodiesterase Inhibitors

- Inhibit breakdown of NO → Increase NO → Sm muscle relaxation

- Sildenafil 20mg PO TID prn (C)
 - Short and long acting preparation

- Very expensive. Insurance may not cover

- SE: dizziness, headache
Pain Modulators

- Reduce symptoms by decreasing visceral hypersensitivity
- Central effects on anxiety and depression

- Trazodone 50-150mg QHS
 - Most studied (RCT)
 - Superior to isosorbide dinitrate

- Imipramine 25mg-100 QHS (C)

- Amitriptyline 25mg-100 QHS

- Side Effects:
 - Sedation, dizziness, constipation, QTc prolongation
Pain Modulators

• Start at low dose
• Increase gradually until
 – Clinical improvement occurs
 – SE become troublesome
 – Full dose reached

• Benefits may not be seen for 4-8 weeks

• Duration of treatment
 – Can continue treatment indefinitely
 – Consider taper after 6 - 12 months
Psychological Intervention

• As with other functional GI disorders patients may benefit from CBT or interpersonal therapy

• Patients learn to
 – Cope with symptoms by diverting attention away from GI symptoms
 – Addressing unhelpful thoughts and behaviors

• Single case study of successful treatment of esophageal spasm with biofeedback and self-regulation

Latimer PR. Biofeedback Self Regul. 1981
Botulinum Toxin

• Botulinum Toxin A inhibits release of ACh → muscle relaxation

• Botulinum toxin 80-200 IU
 – Endoscopic injection into GEJ and/or distal esophagus
 – Can be repeated when symptoms return

Achalasia.ca
Van Hoeij et al. 2016, Dis Esophagus
Marjoux S et al. 2013, Endoscopy
Botulinum Toxin

• Several studies (mostly small uncontrolled studies)
 – >6 month response in 50-100% of patients

• One RCT cross over study
 – 22 patients with non-achalasia esophageal hypermotility disorders
 – Botox 8 x 12.5 IU injections (2 and 7cm above GEJ)
 – Sham injections - saline
 – 4 week cross over design
Botulinum Toxin

- Improved motility
- Relieved dysphagia in ½ of patients
- Stabilized weight loss
- No significant effects on
 - Chest pain
 - GERD
 - Regurgitation

- 30% had a sustained response at 1yr

Jackhammer - before Botox

Jackhammer - 1 month after Botox

Side Effects of Botulinum Toxin

• Complications of botulinum toxin injections for treatment of esophageal motility disorders
 – 386 patients/661 procedures
 – Mild complications 7.9%
 ☐ Chest pain, heartburn, epigastric pain
 – No ulceration, perforation, pneumothorax
 – One patient died after developing mediastinitis - mycotic aneurysm

• Three case reports: mediastinitis, esophageal ulceration with necrosis, subdiaphragmatic abscess

Van Hoeij et al. 2016, Dis Esophagus
Marjoux S et al. 2013, Endoscopy
Dilation

• Pneumatic dilation has been proposed for treating of spastic esophageal disorders and some success has been reported

• Unclear if patients that benefited would have been more properly classified as having spastic achalasia

• Risk: 1% risk of perforation

Nair LA et al. 1993, Dig Dis Sci
Irving JD et al. 1992, Gastrointest Radiol
Surgery

• Myotomy with incision extending along the entire smooth muscle of the esophagus

• In one case series outcomes after surgery better than continued medical care

• No controlled studies

• Clinically significant morbidity in 5%

• No deaths

Patti MG et al. 1995, Arch Surg
Leconte M et al. 2007, Br J Surg
POEM

• PerOral Endoscopic Myotomy
 – Endoscopic equivalent of myotomy

• Effective and safe therapeutic modality for treatment of spastic esophageal disorders

Khan et al. 2017, Dig Dis Sci
POEM

- Meta-analysis of 8 observational studies
 - 179 patients
 - Improvement in dysphagia
 - DES (37 patients) – 88%
 - JH (18 patients) – 72%
 - Overall adverse event rate 14%
 - 3% of patients required subsequent intervention and/or prolonged hospitalization
 - High volume centers with experienced endoscopists

Khan et al. 2017, Dig Dis Sci
Absent Contractility

- Normal IRP
- 100% failed peristalsis - Scleroderma esophagus
Absent Contractility

- Systemic Sclerosis
- Other connective tissue disease
- DM
- Multiple Sclerosis
- In absence of systemic disease
Treatment of Absent Contractility

• Lifestyle modifications
 – Maintaining upright position after food ingestion
 – Dietary modifications

• Acid suppression

• Promotility agents are typically ineffective
The Chicago classification v3.0
Hierarchical analysis

1. IRP ≥ ULN and 100% failed peristalsis or spasm
 - Yes: Achalasia
 - Type I: No contractility
 - Type II: ≥20% PEP
 - Type III: ≥20% spasm (DL<4.5s)
 - No: Disorders with EGJ outflow obstruction

2. IRP ≥ ULN and not Type I-III achalasia
 - Yes: EGJ outflow obstruction
 - Incompletely expressed achalasia
 - Mechanical obstruction
 - No: Major disorders of peristalsis

3. IRP normal and Short DL or high DCI or 100% failed peristalsis
 - Yes: DES
 - ≥ 20% premature (DL<4.5s)
 - Jackhammer esophagus
 - ≥ 20% DCI >8,000 mmHg•s•cm
 - Absent contractility
 - No scorable contraction
 - Consider achalasia
 - No: Minor disorders of peristalsis
 - Ineffective motility (IEM)
 - ≥50% ineffective swallows
 - Fragmented peristalsis
 - ≥50% fragmented swallows and not ineffective
 - No: Normal

Kahrilas et al. 2015, Neurogastroenterol Motil
Minor Esophageal Disorders

- Significant overlap with patterns observed in normal controls
- Commonly associated with GERD
- Can be associated with abnormal bolus transit and dysphagia
- Clinical significance and direction of therapy remain unclear

Ineffective motility (IEM)
- ≥50% ineffective swallows

Fragmented peristalsis
- ≥50% fragmented swallows and not ineffective
Ineffective Esophageal Motility

- >50% of weak and/or failed swallows
 - Failed: DCI < 100mmHg/cms
 - Weak: DCI 100-450mmHg/cms

Interpretation of HRM Esophageal Manometry, Given Imaging
Fragmented Peristalsis

- >50% fragmented swallows
 - Large gaps in the isobaric contour
 - Associated with bolus escape in esophagus
Treatment of Minor Esophageal Disorders

• Control of acid reflux

• Lifestyle modification
 – Maintain upright position after pill ingestion
 – Modification of diet

• Pain modulator therapy for functional dysphagia
In Summary
Evolution of Esophageal Manometry

- Over recent years, esophageal manometry has become a remarkably sophisticated technique
Treatment

- DES/Jackhammer Esophagus
 - CCB, nitrate donors, peppermint oil, PDI, pain modulators
 - Botox
 - Extended myotomy
 - POEM
Treatment

- Absent Contractility
- Ineffective Motility/Fragmented Peristalsis
 - Acid suppression
 - Lifestyle and dietary modification
 - Pain modulator therapy can be considered in Ineffective Motility/Fragmented Peristalsis

- Further studies to better characterize esophageal motility disorders and guide treatment are needed
Thank you
Esophagus and Upper GI

• Barrett’s esophagus ablation – where are we a decade later?

 V. Raman Muthusamy, MD

• Endo GERD therapy – dead or alive?

 Gary Reiss, MD

• Esophageal motility disorders – not just achalasia!

 Monik Lammi, MD

• Treating achalasia – when to consider surgery and new options for therapy.

 James Wooldridge, Jr., MD
Case Presentations
Case 1

- 54 yo female with history of anxiety, IBS-D, HTN presenting with intractable vomiting
 - Symptoms started after gastric bypass one year ago
 - Vomiting occurs after every meal
 - Even a glass of water can trigger vomiting
 - Symptoms often associated with belching
 - Denies nausea
 - Vomitus tastes the same as ingested food
 - No improvement with various anti-emetics and PPIs

- Normal EGD, GES, CT of abd
Case

- Symptoms resolved with diaphragmatic breathing, CBT and TCA
Rumination Syndrome

• Functional gastrointestinal disorder characterized by effortless and repetitive regurgitation of recently ingested food
• Followed by either re-swallowing or spitting
Rumination Syndrome

- Patients report “vomiting” or “reflux” immediately after a meal (within 20 minutes)
- Can persist for 2 hours
- Symptoms occur with every meal
- Vomitus tastes the same as ingested food
- Often preceded by belching or burping
- Associated with abd pain due to diaphragmatic strain
- Usually no nausea or retching
- No response to antiemetic and GERD treatment
- No rumination at night or during sleep
• **Diagnosis**
 - High resolution manometry with impedance shows increase in intra-gastric pressure followed by regurgitation

Fox M. et al. 2012, Neurogastroenterol Motil
Treatment

- Patient education and reassurance
- Diaphragmatic breathing
- TCA
- Baclofen